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Abstract. Nuclei appear small in size, yet, in real clinical practice, the
global spatial information and correlation of the color or brightness con-
trast between nuclei and background, have been considered a crucial com-
ponent for accurate nuclei segmentation. However, the field of automatic
nuclei segmentation is dominated by Convolutional Neural Networks
(CNNs), meanwhile, the potential of the recently prevalent Transformers
has not been fully explored, which is powerful in capturing local-global
correlations. To this end, we make the first attempt at a pure Trans-
former framework for nuclei segmentation, called TransNuSeg. Different
from prior work, we decouple the challenging nuclei segmentation task
into an intrinsic multi-task learning task, where a tri-decoder structure
is employed for nuclei instance, nuclei edge, and clustered edge segmen-
tation respectively. To eliminate the divergent predictions from different
branches in previous work, a novel self distillation loss is introduced to
explicitly impose consistency regulation between branches. Moreover, to
formulate the high correlation between branches and also reduce the
number of parameters, an efficient attention sharing scheme is proposed
by partially sharing the self-attention heads amongst the tri-decoders.
Finally, a token MLP bottleneck replaces the over-parameterized Trans-
former bottleneck for a further reduction in model complexity. Experi-
ments on two datasets of different modalities, including MoNuSeg have
shown that our methods can outperform state-of-the-art counterparts
such as CA2.5-Net by 2–3% Dice with 30% fewer parameters. In con-
clusion, TransNuSeg confirms the strength of Transformer in the context
of nuclei segmentation, which thus can serve as an efficient solution for
real clinical practice. Code is available at https://github.com/zhenqi-he/
transnuseg.
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1 Introduction

Accurate cancer diagnosis, grading, and treatment decisions from medical images
heavily rely on the analysis of underlying complex nuclei structures [7]. Yet, due
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Fig. 1. Semantic illustrations of the nuclei segmentation networks with different num-
bers of decoders. (a) Sole-decoder to perform a single task of nuclei segmentation. (b)
Bi-decoder to segment nuclei and locate nuclei edges simultaneously. (c) Tri-decoder
with the third encoder path to specify the challenging clustered edge (ours), where
the consistency regularization is designed across the predictions from the other two
branches (dashed line).

to the numerous nuclei contained in a digitized whole-slide image (WSI), or even
in an image patch of deep learning input, dense annotation of nuclei contour-
ing is extremely time-consuming and labor-expensive [11]. Consequently, auto-
mated nuclei segmentation approaches have emerged to satisfy a broad range
of computer-aided diagnostic systems, where the deep learning methods, partic-
ularly the convolutional neural networks [5,12,14,19,21] have received notable
attention due to their simplicity and generalization ability.

In the literature work, the sole-decoder design in these UNet variants
(Fig. 1(a)) is susceptible to failures in splitting densely clustered nuclei when
precise edge information is absent. Hence, deep contour-aware neural network
(DCAN) [3] with bi-decoder structure achieves improved instance segmentation
performance by adopting multi-task learning, in which one decoder learns to
segment the nuclei and the other recognizes edges as described in Fig. 1(b). Sim-
ilarly, CIA-Net [20] extends DCAN with an extra information aggregator to fuse
the features from two decoders for more precise segmentation. Much recently,
CA2.5-Net [6] shows identifying the clustered edges in a multiple-task learning
manner can achieve higher performance, and thereby proposes an extra out-
put path to learn the segmentation of clustered edges explicitly. A significant
drawback of the aforementioned multi-decoder networks is the ignorance of the
prediction consistency between branches, resulting in sub-optimal performance
and missing correlations between the learned branches. Specifically, a prediction
mismatch between the nuclei and edge branches is observed in previous work [8],
implying a direction for performance improvement. To narrow this gap, we pro-
pose a consistency distillation between the branches, as shown by the dashed
line in Fig. 1(c). Furthermore, to resolve the cost of involving more decoders, we
propose an attention sharing scheme, along with an efficient token MLP bottle-
neck [16], which can both reduce the number of parameters.

Additionally, existing methods are CNN-based, and their intrinsic convo-
lution operation fails to capture global spatial information or the correlation
amongst nuclei [18], which domain experts rely heavily on for accurate nuclei
allocation. It suggests the presence of long-range correlation in practical nuclei
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segmentation tasks. Inspired by the capability in long-range global context cap-
turing by Transformers [17], we make the first attempt to construct a tri-decoder
based Transformer model to segment nuclei. In short, our major contributions
are three-fold: (1) We propose a novel multi-task framework for nuclei segmenta-
tion, namely TransNuSeg, as the first attempt at a fully Swin-Transformer driven
architecture for nuclei segmentation. (2) To alleviate the prediction inconsistency
between branches, we propose a novel self distillation loss that regulates the con-
sistency between the nuclei decoder and normal edge decoder. (3) We propose
an innovative attention sharing scheme that shares attention heads amongst all
decoders. By leveraging the high correlation between tasks, it can communicate
the learned features efficiently across decoders and sharply reduce the number of
parameters. Furthermore, the incorporation of a light-weighted MLP bottleneck
leads to a sharp reduction of parameters at no cost of performance decline.

Fig. 2. The overall framework of the proposed TransNuSeg of three output branches to
separate the nuclei, normal edges, and cluster edges, respectively. In the novel design,
a pre-defined proportion of the attention heads are shared between the decoders via
the proposed sharing scheme, which considerably reduces the number of parameters
and enables more efficient information communication.
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2 Methodology

Network Architecture Overview. Figure 2 illustrates the overall archi-
tecture of the proposed multi-task tri-decoder Transformer network, named
TransNuSeg. Both the encoder and decoders utilize the Swin Transformer [13] as
the building blocks to capture the long-range feature correlations in the nuclei
segmentation context. Our network consists of three individual output decoder
paths for nuclei segmentation, normal edges segmentation, and clustered edges
segmentation. Given the high dependency between edge and clustered edge, we
are inspired to propose a novel attention sharing scheme, which can communicate
the information and share learned features across decoders while also reducing
the number of parameters. Additionally, a token MLP bottleneck is incorporated
to further increase the model efficiency.

Attention Sharing Scheme. To capture the strong correlation between nuclei
segmentation and contour segmentation between multiple decoders [15], we intro-
duce a novel attention sharing scheme that is designed as an enhancement to
the multi-headed self-attention (MSA) module in the plain Transformer [17].
Based on the attention sharing scheme, we design a shared MSA module, which
is similar in structure to vanilla MSA. Specifically, it consists of a LayerNorm
layer [1], residual connection, and feed-forward layer. Innovatively, it differs from
the vanilla MSA by sharing a proportion of globally-shared self-attention (SA)
heads amongst all the parallel Transformer blocks in decoders, while keeping
the remaining SA heads unshared i. e. learn the weights separately. A schematic
illustration of the shared MSA module in the Swin Transformer block is demon-
strated in Fig. 3, as is formally formulated as follows:

Shared-MSA(z) =
[
SAs

1(z), · · · ,SAs
m(z),SAu

1 (z), · · · ,SAu
n(z)

]
Uu

MSA, (1)

[·] writes for the concatenation, SA(·) denotes the self-attention head whose
output dimension is Dh, and Uu

MSA ∈ R
(m+n)·Dh×D is a learnable matrix. The

superscript s and u refer to the globally-shared and unshared weights across all
decoders, respectively.

Token MLP Bottleneck. To reduce the complexity of the model, we leverage a
token MLP bottleneck as a light-weight alternative for the Swin Transformer bot-
tleneck. Specifically, this approach involves shifting the latent features extracted
by the encoder via two MLP blocks across the width and height channels, respec-
tively [16]. The objective of this process is to attend to specific areas, which
mimics the shifted window attention mechanism in Swin Transformer [13]. The
shifted features are then projected by a learnable MLP and normalized through
a LayerNorm [1] before being fed to a reprojection MLP layer.

Consistency Self Distillation. To alleviate the inconsistency between the con-
tour generated from the nuclei segmentation prediction and the predicted edge,
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we propose a novel consistency self distillation loss, denoted as LSD. Formally,
this regularization is defined as the dice loss between the contour generated from
the nuclei branch prediction (yn) using the Sobel operation (sobel(yn)) and the
predicted edges ye from the normal edge decoder. Specifically, the self distillation
loss LD is formulated by Lsd = Dice(sobel(yn), ye).

Multi-task Learning Objective. We employ a multi-task learning paradigm
to train the tri-decoder network, aiming to improve model performance by
leveraging the additional supervision signal from edges. Particularly, the nuclei
semantic segmentation is considered the primary task, while the normal edge
and clustered edge semantic segmentation are viewed as auxiliary tasks. All
decoder branches follow a uniform scheme that combines the cross-entropy loss
and the dice loss, with the balancing coefficients set to 0.60 and 0.40 respec-
tively, as previous work [6]. Subsequently, the overall loss L is calculated as a
weighted summation of semantic nuclei mask loss (Ln), normal edge loss (Le),
and clustered edge loss (Lc), and the self distillation loss (LSD) i. e.

L = γn · Ln + γe · Le + γc · Lc + γsd · Lsd, where coefficients γn, γe and γc are
set to 0.30, 0.35, 0.35 respectively, and γsd is initially set to 1 with a 0.3 decrease
for every 10 epochs until it reaches 0.4.

3 Experiments

Dataset. We evaluated the applicability of our approach across multiple modali-
ties by conducting evaluations on microscopy and histology datasets. (1) Fluores-
cence Microscopy Image Dataset : This set combines three different data sources
to simulate the heterogeneous nature of medical images [9]. It consists of 524
fluorescence images, each with a resolution of 512 × 512 pixels. (2) Histology
Image Dataset : This set is the combination of the open dataset MoNuSeg [10]
and another private histology dataset [8] of 462 images. We crop each image
in the MoNuSeg dataset into four partially overlapping 512 × 512 images.

Fig. 3. A schematic illustration of the proposed Attention Sharing scheme.
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Table 1. Quantitative comparisons with counterparts. The best performance with
respect to each metric is highlighted in boldface.

Dataset Methods DSC (%) F1 (%) Acc (%) IoU (%) ErCnt (%)

Microscopy UNet 85.51± 0.35 91.05± 0.13 92.19± 0.20 85.44± 0.29 55.2± 2.7

UNet++ 94.14± 0.58 92.34± 0.63 93.87± 0.61 86.20± 1.02 69.3± 1.4

TransUNet 94.14± 0.47 92.31± 0.34 93.76± 0.50 86.16± 0.56 51.9± 1.0

SwinUNet 96.05± 0.27 95.02± 0.23 96.08± 0.23 91.06± 0.43 31.2± 0.6

CA2.5-Net 91.08± 0.49 90.05± 0.27 93.40± 0.14 86.89± 0.87 18.6± 1.3

Ours 97.01± 0.74 96.67± 0.60 97.11± 1.02 92.97± 0.41 9.78± 2.1

Histology UNet 80.97± 0.75 72.17± 0.49 90.14± 0.24 61.63± 0.36 45.7± 1.6

UNet++ 87.10± 0.16 75.20± 0.19 91.34± 0.14 62.89± 0.27 38.0± 2.4

TransUNet 85.80± 0.20 72.87± 0.49 90.53± 0.27 60.21± 0.46 35.2± 0.8

SwinUNet 88.73± 0.90 78.11± 1.88 91.23± 0.73 64.41± 0.15 27.6± 2.3

CA2.5-Net 86.74± 0.18 77.42± 0.30 91.52± 0.78 66.79± 0.34 23.7± 0.7

Ours 90.81± 0.22 81.52± 0.44 92.77± 0.64 69.49± 0.17 11.4± 1.1

The private dataset contains 300 images sized at 512 × 512 tessellated from 50
WSIs scanned at 20×, and meticulously labeled by five pathologists according
to the labeling guidelines of the MoNuSeg [10]. For both datasets, we randomly
split 80% of the samples on the patient level as the training set and the remaining
20% as the test set.

Table 2. Comparison of the model complexity in terms of the number of parameters,
FLOPs, as well as the training cost in the form of the averaged training time per epoch.
The average training time is computed using the same batch size for both datasets, with
the first number indicating the averaged time on the Fluorescence Microscopy Image
Dataset and the second on the Histology Image Dataset. The token MLP bottleneck
and attention sharing scheme are denoted as ‘MLP’, and ‘AS’, respectively.

Methods #Params (×106) FLOPs (×109) Training (s)

UNet [14] 31.04 219.03 43.4/27.7
UNet++ [21] 9.05 135.72 41.8/31.7
TransUNet [4] 67.87 129.97 37.1/34.5
SwinUNet [2] 27.18 30.67 37.8/35.2
CA2.5-Net [6] 24.27 460.70 73.8/70.2
Ours (w/o MLP & w/o AS) 34.33 93.98 76.1/74.3
Ours (w/o MLP) 30.82 123.60 62.6/61.2
Ours (w/o AS) 21.33 116.95 53.1/51.2
Ours (full settings) 17.82 165.95 51.5/50.8
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Fig. 4. Exemplary samples and their segmentation results using different methods.
TransNuSeg demonstrates superior segmentation performance compared to its counter-
parts, which can successfully distinguish severely clustered nuclei from normal edges.

Implementations. All experiments are performed on one NVIDIA RTX 3090
GPU with 24 GB memory. We use Adam optimizer with an initial learning
rate of 1× 10−4. We compare TransNuSeg with UNet [14], UNet++ [21], Tran-
sUNet [4], SwinUNet [2], and CA2.5-Net [6]. We evaluate the results by using
Dice Score (DSC), Intersection over Union (IoU), pixel-level accuracy (Acc), and
F1-score(F1) as metrics, and ErCnt [8]. To ensure statistical significance, we run
all methods five times with different fixed seeds and report the results as mean
± standard deviation.

Results. Table 1 shows the quantitative comparisons for the nuclei segmen-
tation. The large margin between the SwinUNet and the other CNN-based or
hybrid networks also confirms the superiority of the Transformer in fine-grained
nuclei segmentation. More importantly, our method can outperform SwinUNet
and the previous methods on both datasets. For example, in the histology image
dataset, TransNuSeg improves the dice score, F1 score, accuracy, and IoU by
2.08%, 3.41%, 1.25%, and 2.70% respectively, over the second-best models. Simi-
larly, in the fluorescence microscopy image dataset, our proposed model improves
DSC by 0.96%, while also leading to 1.65%, 1.03% and 1.91% increment in
F1 score, accuracy, and IoU to the second-best performance. For better visu-
alization, representative samples and their segmentation results using different
methods are demonstrated in Fig. 4. Furthermore, Table 2 compares the model
complexity in terms of the number of parameters, floating point operations per
second (FLOPs), and the training computational cost, where our approach can
significantly reduce around 28% of the training time compared to the state-of-
the-art CNN multi-task method CA2.5-Net, while also boosting performance.
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Table 3. The ablation on each functional block, where ‘MLP’, ‘AS’, and ‘SD’ represent
the token MLP bottleneck, attention sharing scheme, and the self distillation.

MLP AS SD Microscopy Histology
DSC (%) F1 (%) Acc (%) IoU (%) DSC (%) F1 (%) Acc (%) IoU (%)

× × × 95.31 94.05 96.06 90.05 88.76 78.20 90.96 64.48

• × × 95.49 94.48 95.95 89.97 89.41 77.94 91.02 65.17

× • × 95.88 93.51 96.11 90.55 90.23 80.46 92.03 67.84

• • × 96.95 95.72 96.92 91.98 90.27 81.04 92.01 67.56

× × • 96.99 95.74 97.02 92.22 90.25 80.81 92.45 68.14

• × • 96.58 95.65 97.03 92.07 90.17 80.62 92.35 67.88

× • • 96.89 95.78 97.12 92.08 90.34 80.88 92.49 68.05

• • • 97.01 96.67 97.11 92.97 90.81 81.52 92.77 69.49

Ablation. Our ablation study yields that token MLP bottleneck and attention
sharing schemes can complementarily reduce the training cost while increasing
efficiency, as shown in Table 2 (the last 4 rows). To further show the effectiveness
of these schemes, as well as consistency self distillation, we conduct a comprehen-
sive ablation study on both datasets. As described in Table 3, each component
proportionally contributes to the improvement to reach the overall performance

Fig. 5. The impact of self distillation regularization on mismatch reduction across three
decoders. (a) Raw input image. Segmentation results by TransNuSeg trained (b) w/o
self distillation, and (c) w/ self distillation. The predicted normal edges from the normal
edge decoder are shown in green; while the edges generated from the nuclei decoder and
processed with the Sobel operation are in red. The yellow color indicates the overlap
between both. Accordingly, the numbers below images indicate the proportion of the
pixels belonging to the three parts. Compared to the results without self distillation,
the outputs with self distillation exhibit reduced mismatches, resulting in improved
segmentation performance. (Color figure online)
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boost. Moreover, self distillation can enhance the intrinsic consistency between
two branches, as visualized in Fig. 5.

4 Conclusion

In this paper, we make the first attempt at an efficient but effective multi-task
Transformer framework for modality-agnostic nuclei segmentation. Specifically,
our tri-decoder framework TransNuSeg leverages an innovative self distillation
regularization to impose consistency between the different branches. Experimen-
tal results on two datasets demonstrate the excellence of our TransNuSeg against
state-of-the-art counterparts for potential real-world clinical deployment. Addi-
tionally, our work opens a new architecture to perform nuclei segmentation tasks
with Swin Transformer, where further investigations can be performed to explore
the generalizability to the top of our methods with different modalities.
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